案例详情

Case Information

客户案例 案例详情
金融大数据分析平台

1.大数据在金融监管机构中的应用

1)大数据助力金融机构的战略转型

在宏观经济结构调整和利率逐步市场化的大环境下,目前国内的金融机构主要表现出盈利空间收窄、业务定位亟待调整、核心负债流失等问题。业务转型的关键在于创新,但现阶段我国金融机构的创新往往沦为监管套利,没有以挖掘客户内在需求,提供更有价值的服务为主。而大数据技术正是能够帮助金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要工作。

此外,大数据及智能技术的逐渐成熟将会重塑未来金融监管的方式。以非法集资为例,在互联网时代不法分子利用网络的虚拟性、广泛传播性等特点,通过承诺高收益来吸引广大投资者。近年来由于经济形势下行,非法集资案件频发,对金融秩序和居民的合法权益造成较大的影响。

利用大数据建立非法集资监测预警平台就为打击非法集资提供了有力工具,可以提高金融监管的效率和准确性。非法集资预警平台的设计包括两个子平台:一是对正规金融产品登记的前台,通过对网站销售的金融产品的信息进行登记,做好数据收集工作。产品登记、信息披露、资金托管是互联网金融三大监管措施,金融机构将产品的属地名称、属地编号、发行日期、机构编号、产品编号等信息在平台上进行登记、备案。二是发现非法集资线索的后台,用来打击违法犯罪,守住底线。前台提供信息给消费者,后台打击非法集资。基本建设思路为:利用互联网搜集信息,运用大数据挖掘、云计算技术,通过两次比对、一次干预、最后确认的一系列步骤,实现对疑似非法集资的企业进行不同级别的处置应对。

2)大数据能够降低金融机构的管理和运行成本

通过大数据对信息的挖掘和分析,金融机构能够准确地定位内部的管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,最终实现降低管理运营成本。大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销行情。

3)大数据有助于降低信息不对称程度,增强风险控制能力

金融机构可以摒弃原来过度依靠客户提供财务报表获取企业信息的业务方式,转而对其资产价格、账务流水、相关业务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。目前,花旗、富国、UBS等先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、纳税和信用记录等,对客户行为进行360度评价,计算动态违约概率和损失率,提高贷款决策的可靠性。

2.大数据在银行业中的应用

1)帮助银行控制信贷风险

在传统方法中,银行对企业客户的违约风险评估多是基于过往的营业数据和信用信息,这种方式的最大弊端就是缺少前瞻性,因为影响企业违约的重要因素并不仅仅只是企业自身的经营状况,还包括行业的整体发展状况,而大数据手段的介入使信贷风险评估更趋近于事实。西班牙一家大型银行正是利用大数据来为企业客户提供全面深入的信用风险分析。该行首先识别出影响行业发展的主要因素,然后对这些因素进行模拟,以测试各种事件对其客户业务发展的潜在影响,并综合评判每个企业客户的违约风险。这样的做法不仅成本低,而且对风险评估的速度快,同时显著提升了评估的准确性。

2)大数据能够提升银行的中间收入

如今,坐拥海量数据的银行不再局限于使用数据服务其核心业务,把数据直接变成新产品并用来创造直接收入是新的中间收入拓展渠道。澳大利亚一家大型银行通过支付数据的分析了解零售客户“消费路径”,即客户进行日常消费时的典型顺序,包括客户的购物地点、购买内容和购物顺序,并对其中的关联进行分析。该银行将这些分析结果销售给公司客户,帮助客户更准确地判断合适的产品广告投放地点以及适合在该地点进行推广的产品。银行通过这种方式获得了传统业务之外的收入。更重要的是,银行通过这样的创新为客户提供了增值服务,从而大大增强了客户粘性。

3)使零售银行业务差异化产品设计更加丰富

在零售银行业务中,大数据为判断客户行为并匹配营销手段提供了广阔的创新空间。例如,海外银行围绕客户的“人生大事”进行交叉销售。这些银行对客户的交易数据进行分析,由此推算出客户经历“人生大事”的大致节点。人生中的这些重要时刻往往能够激发客户对高价值金融产品的购买意愿。通过对客户的银行卡交易数据进行分析,银行很容易识别出即将添丁的家庭,在这样的家庭中,准妈妈会开始购买某些药品,而婴儿相关产品的消费会不断出现。该行面向这一人群推出定制化的营销活动,获得了客户的积极响应,这种具有差异化的产品设计可以大幅提高交叉销售的成功率。

3.大数据在证券业中的应用

1)大数据可以提升证券业的个性化服务水平

证券行业作为综合类金融服务产品的提供者,在大数据的背景下,将有能力快速搜集高质量的信息,以设计出更符合客户需求的产品组合,并且可以根据客户偏好的改变及时调整。同时由于中介服务的竞争逐渐同质化,争夺的焦点将来必然落在价格上。如果标准化同质服务不再能够给券商带来正常利润,那么券商必须转变经营思路,将通道业务转变成包含增值服务的金融服务。

大数据能够通过对客户消费行为模式进行分析,提高客户转化率,开发出个性化的产品以满足不同客户的需求。越来越多的证券公司开始采用数据驱动的方法,通过一系列信息的收集、存储、管理和分析,给客户提供更好的决策,充分体现了以客户为中心的服务理念。

2)大数据能够帮助证券公司避免客户的流失

依据客户历史交易行为和流失情况创建大数据分析模型,预测客户流失的概率。比如海通证券自主开发的“给予数据挖掘算法的证券客户行为特征分析技术”主要应用在客户深度画像以及基于画像的用户流失概率预测,通过对海通100多万样本客户、半年交易记录的海量信息分析,建立了客户分类、客户偏好、客户流失概率等模型。该项技术最大初衷是希望通过客户行为的量化分析,来测算客户将来可能流失的概率。

3)大数据在量化投资方面的应用

量化投资策略在欧美发达国家的金融市场已经相对成熟,由于收益巨大,是大数据最早应用的领域。证券业已经进入了一个大数据信息时代,证券的数据模型越来越复杂多样,数据的总量和种类都有着重大的突破。大数据在处理证券数据时,通过对主力和散户的行为、轨迹分析,对主力资金和散户资金的去向追踪,对主力、散户和市场之间的关系理解,能够很好地增加投资胜率。个人投资者将能够轻松使用大数据获得实证支持,降低交易风险,投资能力将大幅提升。大数据也让科技公司第一次有机会能够挑战传统的金融分析师,利用对各种数据的量化、重组和整合,提供不同的交易策略,让投资者能够科学的分析全球投资市场。

4.大数据在保险行业的应用

1)帮助保险公司减少赔付

赔付直接影响保险企业的利润,对于赔付的管理一直是险企的关注点。而赔付中的“异常值”(即超大额赔付)是赔付额的主要驱动因素之一。一家领先的美国保险集团通过结合内部、第三方和社交媒体数据进行早期异常值检测,用1.4亿个数据点构建预测模型,其中既包括了客户的个人数据(健康状况、人口特征、雇主信息等),也包括了集团的内部数据(过往的理赔信息和已经采取的医疗干预信息等),及时采取干预措施,使平均索赔费用下降了20%。同时,借助大数据手段,险企可以识别诈骗规律,显著提升反欺诈的准确性与及时性。

2)提高保险公司的差异化定价水平

对保费的定义是基于对一个群体的风险判断,而大数据无疑为这样的风险判断带来了前所未有的创新。一家澳大利亚保险公司通过分析客户的购物数据来预测驾驶风险。分析显示,饮用大量牛奶并食用大量红肉的客户具有较低的驾驶风险,而食用大量意大利面和米饭并在夜间开车和饮酒的客户则是高风险人群。

3)大数据的应用可以精细化营销

以淘宝运费退货险为例。据统计,淘宝用户运费险索赔率在50%以上,该产品对保险公司带来的利润只有5%左右,然而依然有众多保险公司有意愿提供该服务。实际上,客户购买运费险就意味着保险公司获得该客户的个人信息,包括手机号、家庭住址、银行账户信息及产品购买信息等,基于这些数据保险公司能够最大限度实现精准推送。

4)解决现有的风险管理问题

通过大数据分析可以解决现有的风险管理问题。比如,通过智能监控装置搜集驾驶者的行车数据,通过社交媒体搜集驾驶者的行为数据,通过医疗系统搜集驾驶者的健康数据,以这些数据为出发点,如果一个人不经常开车,并且开车十分谨慎的话,那么他可以比大部分人节省30%~40%的保费,这将大大的提高保险的竞争力。